当前位置: 放大机 >> 放大机发展 >> 光电探测器的未来扑朔迷离
随着信息时代的飞速发展,信息传播与人类生活密切相关,而光信号则被广泛用作传播信息的载体。在信息传播的终端,需要将光信号转化为电信号,以便于进行信息的处理与存储,而光电探测器作为能够进行光电转化的元器件,在光电系统中有着大量重要的应用。
美佩洛西公然蹿台后,中国人民解放军为捍卫国家尊严,捍卫祖国领土完整,举行了史无空前的大规模围台军演,飞机轰鸣,导弹掠过,这不仅仅让台独分子们战战兢兢,更提醒我们光电探测器在军用领域的作用不容小觑,军用导弹的制导方式是以红外制导为主,同时为了提高导弹的抗红外干扰能力,引入了紫外制导和红外制导共同作用的双色制导方式,这使得导弹可以适应更加复杂的电子对抗环境,准确地探测出定位光源,从而大大地提升导弹的命中能力。
在医疗领域,随着新冠疫情的爆发,无接触式体温检测成为切断病毒传播途径,保障生命安全的一大保障。红外光电探测器能够检测出人体发出的红外光强度,从而正确判断出人体的温度,为疫情防控作出了不可磨灭的贡献。同时在成像领域,光电探测器是CMOS图像传感器的核心元件之一,能够通过光电效应,将相应的可见光信号转换为电荷信号,再经过放大电路和控制模块的作用,就将这个纷繁精彩的世界呈现在我们的眼前。
光电探测器工作原理
光电探测器在光通信系统中对于将光转变成电起着重要作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。要了解光电探测器的工作原理。我们首先需要知道光电导效应,光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。即当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。是指由辐射引起被照射材料电导率改变的一种物理现象,光子作用于光电导材料,形成本征吸收或杂质吸收,产生附加的光生载流子,从而使半导体的电导率发生变化,从而完成光到电的转化。
光电探测器的基本工作机理包括三个过程:1.光生载流子在光照下产生;2.载流子扩散或漂移形成电流;3.光电流在放大电路中放大并转换为电压信号。当探测器表面有光照射时,如果材料禁带宽度小于入射光光子的能量即hv,则价带电子可以跃迁到导带形成光电流。
光电探测器的发展方向
自驱动光电探测器
近年来,随着石油,天然气等资源的逐渐稀缺,人们意识到了节能减碳的重要性,因此对于电子元器件的发展提出了低能耗的要求。在这个背景之下,自驱动光电探测器的概念便孕育而生。自驱动光电探测器指的是器件在无需外加偏压的情况下即可对入射光作出响应,获得响应电流。其原理是利用pn结或者是肖特基结的内建电场分离电子空穴对,并且驱动载流子向电极运动,从而形成电流。自驱动光电探测器符合电子元器件小型化,集成化和低功耗的发展趋势,成为了近年来的研究重点。如图为深圳大学屈军乐教授等人在《NanoEnergy》上提出的新型钙钛矿自驱动光电探测器原理示意图。
表面等离子体共振效应的应用
在光电探测器中利用表面等离子体共振效应可以有效地增强器件的光吸收,扩展器件的光吸收谱,从而产生更多的电子空穴对,提高器件的响应电流,并且共振波长能够被金属纳米结构的介电环境,尺寸和形状所改变,从而调节吸收波段。规律性分布的金属纳米结构,如孔阵列或者栅线等,能够和光发生相互作用,从而提升器件的光吸收能力。除此之外,从图中能够看出在金属纳米粒子的表面存在着大量自由振荡的电子,并且其具有一定的频率,当这个频率与入射光的频率相等时,那么在金属纳米粒子表面的局部区域内光子与电子发生共振,从而大大地增强了器件对光的吸收。后者的激发条件比较简单,即金属纳米粒子的大小应小于入射光的波长,且改变其大小能够调控共振波段,因此可调节性更好,应用更加灵活,被广泛地用于加强器件的性能。
与CMOS兼容的硅基波导型光电探测器
硅基波导型光电探测器作为一类重要的光电探测器,由于其能与标准的CMOS工艺兼容以及制备工艺简单等性能,因而在光电子单片集成方面具备广阔的市场应用前景。
由于硅基光子学能够利用现已大规模应用的微电子工艺线,使得其具备了很好的成本优势和广阔的应用前景,尤其是近年来国外各大研究机构在此领域取得了显著的进展。迄今为止,一系列的硅光子器件比如低损耗光波导、光衰减器、光波分复用/解复用器、硅激光器等被相继报道。年Intel和加州大学洛杉矶分校宣布研究成功世界上第一支混合型Si-InP激光器。年浙江大学的叶鹏、肖涵等人,制作出了具有超高响应度和比探测率的Si-CMOS兼容2DPtSe2基自驱动光电探测器,这种二硒化铂/超薄二氧化硅/硅异质结构的光电探测器具有高性能、空气稳定、自驱动、室温宽带等优异性能。
利用硅器件技术制作p-n和p-i-n二极管型的光电探测器早已实现,这种探测器的峰值响应大约在nm,适合用于光通信中的nm波段的探测;缺点是无法应用现今光通信的波段nm,不能实现微电子与光波回路进行集成。一种解决的方法是通过把Ⅲ-Ⅴ族探测器通过键合的方式集成在硅集成光路上;另一种解决方法是通过离子注入形成深能级缺陷,利用缺陷吸收来实现硅对nm波长的探测。近年来国外几个研究机构利用该方法制备的硅nm光电探测器性能上有了极大改善。除了通过离子注入引入深能级缺陷制作硅基光电探测器,使用Ge/Si异质结、AlGaInAs-Si混合集成等方法也是国内外制作硅基光电探测器的常用手段。
中国及全球光电探测器行业市场现状分析
我们结合国内外光电探测器相关刊物的基础信息以及光电探测器行业研究单位提供的详实资料,结合深入的市场调研资料,立足于当前全球及中国宏观经济、政策、主要行业的对光电探测器行业的影响,并对未来光电探测器行业的发展趋势和前景进行分析和预测。
硅基光电探测器全球市场
硅基光电探测器在本文内是指硅漂移检测器(SDD)和硅光电倍增管(SiPM)。全球硅基光电探测器主要厂商有Hamamatsu、ONSemiconductor、Broad
转载请注明:http://www.aideyishus.com/lktp/3640.html