原创:王新成(资深无线电专家)配图+编辑:收音机评论译介本文系原作者授权转载!梁伟与王新成老先生七、中频放大器是失真之源中放是调频接收机的核心,灵敏度、信噪比、俘获比、失真度和选择性等指标都直接与中放的性能有关,调频中放是应用新器件和新技术最集中的地方,调谐器上曾经使用的技术如下:1)超线性固体滤波器:中放中曾用过LC中周、石英晶体、多模陶瓷和声表面波四种滤波器。LC中周是最古老和经典的器件,4~6个回路组合起来可以把幅频特性设计成巴特沃斯或高斯型。早年为了提高选择性多用巴特沃斯型,由于群时延特性不好,后来在重视音质的机器中流行群时延特性好的高斯型。晶体滤波器具有最好的矩形系数,但群时延特性差。陶瓷滤波器体积小、价格低,早期的产品群时延特性很差,后来的产品有了较大的改进,一跃成为中频滤波器的主流。缺点是中心频率参差性大,需要选择配对。声表面波滤波器的幅频特性和相频特性可以分别设计,群时延特性可以做得很好,但有旁瓣相应。为了兼顾选择性和失真度,调谐器中一般采用多种滤波器组合使用。例如窄带状态用晶体和陶瓷滤波器优先保证选择性,普通状态用陶瓷滤波器和声表面波滤波器兼顾音质和选择性,宽带状态用LC滤波器保证音质和俘获比。2)频率负反馈和变参数中放:频率负反馈的想法是用减小频偏以缩小调频波边带的分布宽度,频带窄了就可以利用陶瓷滤波器中心频率处群时延特性最平直的一段曲线,使失真最低。而且能使百分之百的边带通过滤波器,做到全频谱传输。降低频偏后高频信噪比会下降,故在滤波器之后再用频率正反馈把频偏恢复到75KHz。这一技术最早出现在Onkyo公司的T-调谐器上,它只采用了6分贝的频率负反馈,失真度达到了0.1%。之后,Kenwood公司在此基础上发明了无频谱技术,把频偏压缩到几乎为零,这一技术应用在历史上著名的L-02T调谐器上,使该机的失真降到了0.%。频率负反馈是用改变频偏参数提高线性的,还可以用改变频偏的方法提高信噪比。因为调频波的信噪比与频偏成正比,用简单的倍频器就可以成倍地提高频偏。频偏每提高一倍,信噪比就增加6分贝。如果用5倍频,频偏可提高到KHz,信噪比可提高30分贝。设75KHz频偏时的信噪比是65分贝,5倍频后就是95分贝,和CD的指标相同。频偏增大后对鉴频器的线性范围要求也增大了,因而倍频倍数不要超过5倍。另一个可改变的参数是相对频偏,改变它可提高鉴频灵敏度。它是用二次变频实现的,降低中频频率相对频偏就增大了。宽线性鉴频器的灵敏度往往较低,用这种方法可提高鉴频器的输出幅度。3)信号变换:改变频偏后的调频中频经过降频和限幅以后就变成了稀疏不等的脉冲,用简单的数字电路就可以变换成脉冲宽度调制(PWM)信号,这与CD和数字功放中的一比特量化信号相同,不过调制信号不是音频,而是MPX信号。如果采用数字鉴频器,中频信号就要进行这一变换。在软件无线电中,10.7MHz的中频直接进入ADC采样后用DSP处理,过去中放、鉴频和解码中的新技术都可以用软件算法实现。八、鉴频器的关键是线性和带宽鉴频器是调频接收机中的第二大失真源,从表2看出鉴频器对音质的影响高于高频头和解码器。在一台调谐器中,中放和鉴频器共同决定了它的性能,因此受到生产厂商的格外重视。为了在市场上一争高低,在历史上曾经使用过11种鉴频器,它们是比例鉴频器、相位鉴频器、移相乘积鉴频器、PLL鉴频器、相位跟踪鉴频器、脉冲计数鉴频器、延迟线鉴频器、微分鉴频器、PWM鉴频器、数字参量鉴频器和DSP鉴频器。厂家和设计者大肆渲染自家鉴频器的优点,有的电路被吹捧的天花乱坠。NHK为了评估这些鉴频器的性能,曾经用12KHz的音频以5~10Hz的频偏调频,对鉴频器的通频带进行扫描来检查它们的线性,结果发现根本谈不上哪种鉴频器更好,因为无论什么电路形式的鉴频器,只要线性和带宽达到要求,微分增益是一条水平线,就能得到良好的音质。JVC-T广播调谐器到底多宽的频带和多好的线性才能满足高传真的要求呢?为了防止温度和偏调误差引起的中频失谐,普通收音机中,鉴频器的线性带宽应高于中频带宽KHz,在调谐器中应高于KHz.。如果调谐器中设有带宽选择,宽带一般是KHz,窄带一般是KHz,故鉴频器的线性带宽需要达到KHz。在10.7MHz中心频率的模拟电路鉴频器中,比例和相位鉴频器必须用双调谐回路才能达到要求。也有用跟踪技术产生线性带宽的,例如相位跟踪鉴频器是把调频波变成调相波,在鉴相器中解调出MPX信号,鉴相器的参考信号用锁相环再生。由于电路比较复杂,日立公司把它做成了集成电路HA。JVC公司最青睐这种电路,在他们的中高档调谐器上经常能见到它,如T、JT-V77等。在变参量中放电路中情况就比较复杂,要针对所改变的参数具体对待。当频偏被改变后,鉴频器的带宽就要跟着改变,如果频偏变为KHz、KHz、KHz、KHz后,根据日本副岛末好的计算法,对应的线性带宽是KHz、1.2MHz、1.6MHz、2MHz。模拟鉴频器电路很难做到KHz以上的线性带宽,于是改用数字方式实现。最简单的数字方式是把正弦波调频信号变换成宽度调制脉冲,用低通滤波器还原出MPX信号,例如脉冲计数鉴频器和PWM鉴频器。这种鉴频器70年代初出现在美国Heathkit公司的AJ调谐器上,年Trio公司学会后,用在自己所有的高档调谐器上。另一种数字处理方法是把调频中频下变频成2MHz以下的脉冲,通过两路延迟时间不同的CMOS门,用异或门器解调出MPX信号。数字鉴频算法在DSP中实现非常简单,用正交信号乘法器就可完成,而且不存在线性和带宽问题。现在DAB/FM调谐器上,鉴频和解码就是在DSP中用软件算法实现的。中放和鉴频器曾经是广播爱好者DIY的乐园,有许多构思巧妙、性能优良的经典电路,今天许多爱好者讨论起来仍然津津乐道。九、最放心的是立体声解码器居中而坐者是王新成老先生今天,无论工厂生产的还是自己DIY的调频收音机,最放心的部分立体声解码器。即使两节电池供电的便携机,解码器用一个TA,就能轻易地得到40分贝的立体声分离度。过去,这几乎是不可想象的事情。历史上为了提高接收机的立体声分离度曾经花了二十年的时间。在导频制系统中,和信号和差信号之间的幅度差和相位差;再生副载波与发射端副载波的相位差都会影响分离度。如果和差信号存在3分贝的幅度差或者20度的相位差,再生的副载波相位和原副载波存在20度的相位差,立体声效果就会消失的无影无踪。在解码器中相位差和幅度差是同时存在的,这些参数还会随着温度和时间变化。立体声解码器有矩阵式和开关式两种形式,矩阵式原理简单,实现容易,但对电路和器件要求严格,这就注定了早年用电子管或晶体管设计的矩阵式解码器天生就不会有高的分离度。曾经测试过历史上天价的高级立体声收音机,分离度一般在12分贝左右,远不及今天地摊上卖的手掌机。开关式解码器从原理上讲可得到较高的分离度,但要求再生一个与发射端副载波没有相位差的开关信号。不用锁相环路再生的开关信号不能满足相位要求,因此开关式解码器也得不到高的分离度,最高在20分贝左右。因而,在调频立体声开播后二十多年间,分离度一直是调频接收机的软肋。正当早年欧洲人和日本人在为立体声分离度头痛的时候,年美国Motorola研制出世界上第一个集成锁相环立体声解码器MC,立体声分离度从十几分贝一跃提高到40分贝,失真度从1%减少到0.3%。之后。日本各厂家纷纷学习仿制,生产出了多种性能更加优良的解码器。例如廉价机中常用的TA,分离度45分贝,失真度0.08%,信噪比74分贝。专门用在调谐器中的立体声解码器分离度已达到65分贝,谐波失真0.%,信噪比89dB。自从出现了这种器件,调频收音机中的立体声才变得名副其实。而且打破了高级和普及的界限,不得不使人感叹技术的进步和时代的变迁。十、不可忽视的低频前置放大器王新成老先生与上海广播爱好者虽然低频前置放大器在调谐器中处于不起眼的位置,但作为接收机的一部分不能忽视它的作用,在一个优秀的调谐器中,应该具有下面功能:1)去加重电路:单声道接收机中,50微秒的去加重电路接在鉴频器之后,在立体声接收机中,为了保证导频和差信号不受衰减,去加重电路接在立体声解码器之后。2)导频和副载频滤波器:主要目的是除去音频中残余的导频和副载频分量,防止在低频放大器中引起互调失真。它们还会在录音和AD转换时和偏磁频率和采样频率差拍产生鸟叫声。3)静噪电路:调频接收机增益很高,无信号输入时会产生很大的噪声。过去设置静噪主要为了在调谐时避免噪声,没有电台的位置仍然很安静。数字记忆调谐不存在调谐噪声,由于不少接收机保留了飞轮手动调谐,静噪电路仍是必要的。4)等响控制:根据人耳的听觉等响曲线补偿小音量时听觉频响变窄的缺陷,这个功能在作家庭小音量背景音乐时能获得到高低音丰富的效果。5)音调控制:要用来补偿扬声器和听音环境的缺陷6)通频带控制:在信号弱的边缘地区听调频广播,把低频电路的带宽设置在~0Hz能明显减少高频噪声。7)亲切感控制:适当的提升0~0Hz范围的幅度能使人声感到亲切,适当限制低频放大器的速率能消弱口齿感,增强声音的松软度。十一、FM广播不适合用Hi-Fi耳机聆听SAEMark6顶级广播调谐器用Hi-Fi头戴式耳机聆听调频广播时总感觉到声音有点粗糙,在节目间隔和低电平时会听到咝咝的噪声和噼啪的放电声,这是调频广播固有的本底噪声。来自外界的天电、工业和家用电器干扰,其中99.9%的分量能被中放和鉴频器的限幅器中抑制掉,剩下的寄生调频、晶体管的热噪声和闪烁噪声限幅器就无能为力了,它们会叠加到音频信号上变成本底噪声。那么用扬声器为什么听不到本底噪声呢?其中有两方面的原因,其一是耳机音圈和振膜的重量很轻。如果一副耳机和一个音箱同样标有90分贝的灵敏度,耳机是指用1毫瓦的电功率驱动在一厘米处可获得90分贝的声压;扬声器则是用1瓦的电功率驱动在距音箱1米处可获得同样的声压,显然耳机的灵敏度比扬声器要高几千倍。另一个原因是声音传输方向上,单位面积通过的声能与距离的平方成反比例,而且声音频率从1KHz上升到10KHz,频率上升了10倍,空气的吸收损失却上升了倍。低电平干扰和噪声的能量分布在声频中高频段,在空气中衰减很快,在一米以外几乎衰减到零。距离和空气扮演了滤波器的作用,使人耳完全感觉不到本底干扰和噪声的存在。用耳机聆听情况就完全不一样了,耳膜距耳机的距离很近,相当于旁路了这个本底噪声滤波器,加之耳机的灵敏度很高,把音乐和噪声尽收耳中,使我们感到声音发糙。另外,扬声器和耳机对音乐的适应性和聆听时的心理感觉也不一样,扬声器适于欣赏气魄,如交响乐、演唱会和歌剧。节目中震撼心灵的倍斯,松软甜美的中音,华丽明亮的高音象心印一样会诱导聆听者去感受音乐的整体轮廓,而无暇顾及枝节。耳机适于欣赏细节,如泣如诉的小提琴和二胡、时隐时现的三角铁等。甜美的人声和纤细入微的高音会诱导聆听者去感受音乐的旋律和技巧,捕捉丰富的层次和比较微小的差异。因此,老烧的经验是用耳机听CD,用喇叭听广播。十二、迎接数字化的明天调频广播携带着音乐和快乐走过了66年的历程,上个世纪我国的广播爱好者没有福气享受音乐调频,改革开放以后各地的调频电台如雨后春笋一样冒了出来。但两个遗憾困扰着广大爱好者:一个是播出内容良莠不齐,地、县级的调频台不但设备差,节目内容也不敢恭维。再一个遗憾是没有好的接收机来享受广播。2中央人民广播电台提出“频率专业化,管理频率化”改革口号以来,中国之声,经济之声,音乐之声相继推出,地方电台也跟进改革了播出节目。仔细比较了上海的调频电台,.7MHz音乐之声的音质最好;94.7MHz经典音乐的内容最好,可惜发射功率最小。虬江路电子市场和襄阳路现代电子商城可以淘到价廉物美的二手调谐器。调频广播虽然面临被数字广播取代的结局,但现在广播的质量却达到了巅峰,将来替代的制式无论是DAB还是IBOC都经过了码率压缩。从理论上讲压缩的是冗余信号,但听音评价是一件复杂的事情,理论和实验室里得出的结论不能涵盖每个人的个体心理和生理差别。英国的DAB广播已经非常普及,欧洲的爱好者仔细对比了DAB和FM的音质,对DAB水晶般声音的宣传词提出了质疑。无论我国将来采用什么制式的数字广播,人类固有的怀旧情结肯定会让许多人怀念曾给我们带来无穷快乐的调频广播。在福音堂里一位牧师曾开导我:“要珍惜今天,只有今天才是最美好的”。
转载请注明:
http://www.aideyishus.com/lkcf/6149.html