当前位置: 放大机 >> 放大机市场 >> 互联网平台数据垄断理论分歧治理实践及政
不同的数据承载着不同的信息,不同的信息也具有不同的价值。大型数字平台在经营时间和客户规模上具有的优势,使其可以更大范围和更长时间地跟踪市场信息变化,长期地从信息中提取价值。并且,大型数字平台可以利用其已有的垄断力量从获取的信息中攫取更多的利益,进一步巩固大型数字平台的垄断地位。中国社会科学院财经战略研究院研究员李勇坚认为,解决数据垄断问题,需建立数据共享规则,明确平台数据的权利体系,规范数据收集的同意条款和收集范围,建立数据开发与信息保护相平衡的机制,从而加强对数据垄断的监管。
重要观点,加强对数据垄断监管的政策建议
1.建立数据共享规则。数据共享的核心是要建立公益性的、共享的数据交换机制。在数据壁垒还没有形成之前,我国应抓紧当前的时间窗口,加快建立数据保护与数据共享机制。
2.明确平台数据的权利体系。既要避免平台将数据产权化,作为平台的私有财产;也应承认数据收集者、控制者对数据的利用、开发等享有适度的权利,鼓励产业发展。
3.规范数据收集的同意条款和收集范围。出台更细化的管理规定,明确数据收集的明示原则,要求平台明确数据收集的范围等。同时,对平台将信息收集与提供服务进行捆绑的商业模式进行更精准的监管。
数据垄断的含义及具体表现
数据垄断是一个非常有争议的问题。有学者认为,平台通过数据收集隐蔽化、平台数据产权化和数据利用黑箱化等手段,实现了数据量的垄断和基于数据的垄断。因此,数据垄断至少要分为两个层次。
一是数据量的垄断,在数字经济领域,平台利用其用户优势、技术优势、基础设施优势等,收集了大量的数据。虽然数据使用在理论上具有非竞争性和非排他性,但加密技术的发展,以及在制度上数据共享机制的缺乏,使平台能够垄断一定的数据量。从成本结构上看,收集和存储数据意味着高固定成本低边际成本,这容易产生数据收集和存储的规模经济与范围经济,这本身会加剧数据量方面的垄断。正如Ezrachi,A.和Stucke,E.M.所指出的,数据的经济学性质,使其有利于市场集中和支配地位。然而,从现实来看,对数据量的垄断分析,需要一个定义完备的数据市场,这个市场目前仍没有广泛形成。二是以数据作为强化垄断的工具。数据作为一种生产要素,能够实现一次收集、多次使用,在使用上具有非竞争性和非排他性,能够在多种业务线上同时使用,且多次使用的边际成本趋向于零;而且,数据使用具备正反馈效应,在使用过程中还能够产生新的数据,这对平台的垄断具有强化作用。在互联网平台应用实践中,数据垄断更多表现为利用数据提高竞争优势、侵害消费者权益、破坏竞争秩序等行为。因此,从本文的研究视角来看,研究的重点将放在“以数据作为强化垄断的工具”这个视角来研究数据垄断问题。数据作为强化垄断的工具,主要是数据能够提高产品或服务的质量,并能够成为市场进入的壁垒。
利用数据提高产品或服务的质量,并实现精准定价。通过收集、分析和汇总大量数据,公司可以提高产品质量并将其活动扩展到新的领域。一位欧盟数据保护监督局的官员表示,“在数据应用方面,政府与商业机构已突破了提高产品质量并将其活动扩展到新‘真相挖掘’的路径。人们的生活经历、社会交往甚至是所思所想都可以转化为算法模型里面的数据源”,由于在较大的数据集上进行训练时,机器学习会产生更好的见解,因此,拥有大量数据访问权限的公司可以以访问数据受限的公司无法做到的方式提高服务质量。
另外,数据要素的使用也不同于其他要素。数据要素通常是作为用户在平台或关联用户上进行交互的副产品而生成的。该数据又用于改善平台提供的服务。因此,在用于处理数据的算法质量相同的情况下,拥有最多数据的平台将更加高效。这为大型企业提供了类似于“干中学”的优势。例如,网络地图服务通过对用户进行地理定位来获取交通状况信息,然后在将来的查询中再将其推回给用户。类似地,搜索引擎通过其用户在搜索结果页面上的点击(以及更普遍的行为)来“学习”特定网站与特定查询的相关性。反过来,他们的行为会影响相关查询的搜索结果排名,以造福将来的用户。诸如Netflix或Spotify之类的内容提供商广泛使用推荐系统有关先前用户与标题和歌曲的互动信息来提供播放列表,并且以增加未来用户互动的方式对目录进行排序。因此,一方面,平台可利用有关特定消费者过去行为的历史数据,来改善向同一用户提供服务的精准度与质量。如果用户成为某一平台的客户已经一段时间了,则该平台会了解他或她的品味,并且可以使他或她偏爱的商品或服务更加突出。另一方面,平台可以使用来自其他用户的数据来提高向每个用户服务的质量。
在实证研究中,Bajari等使用亚马逊的数据提供了关于数据规模能否带来更准确预测的实证研究,使用具有两个维度的数据为统计模型提供数据:同一类别的产品数量N和特定产品待售的期间T。有关先前预测和零售数量随后实现的其他数据可提高特定产品零售预测的准确性。他们还发现,通过添加相同类别其他产品上的数据进行扩展不会产生任何效果。因此,他们没有找到支持“反馈回路”假说的证据,在该假说中,大型零售商通过出售许多产品而具有竞争优势。最重要的是时间维度(一个特定产品销售了多长时间),学习曲线很快变得平坦。数据要素通过改善质量从而提升垄断优势的特征,使其在具体垄断表现方面不同于既有的垄断市场。通常,垄断带来的危害是价格上涨,产量减少或质量下降。但数据垄断往往是提供更高质量的产品或服务。StuckeE.M.指出,从表面上看,数据寡头(Data-opolies)几乎不会对这些危害造成任何风险(如果有的话)。与某些药品不同,数据寡头不向消费者收取高昂的价格。谷歌和Facebook的大多数消费产品表面上都是“免费的”。数据寡头的规模也可能意味着更高质量的产品。使用特定搜索引擎的人越多,搜索引擎的算法可以了解用户的偏好越多,搜索结果的相关性就越高,这反过来又可能吸引其他人进入搜索引擎,并且肯定的反馈持续不断。但是,从其他方面看,平台能够更好地利用这种质量改进优势,强化其市场地位,从而损害市场竞争秩序。
除了提升产品或服务的质量之外,利用大数据还能进行精准定价。例如,通过利用数据不断测试与研究,亚马逊算法模型已经找到了在不同维度的衡量标准下特定人群的消费模式。当前,亚马逊掌握的用户数据数量要远远超过其他零售商的数据储备。海量的用户数据支持着亚马逊进行各种营销实验,而它所能提供商品的价格水平也将在动态调整中更加贴合不同消费者的消费偏好。在可以预见的未来,线上商品价格调整的频率将增加,而产品推荐页面也将改造成更好迎合不同消费者个人喜好的个性化样式。至于价格优化,那更是不言而喻。
当精准定价被平台利用到极致时,不可避免地会产生平台针对每个不同的消费者进行个性化定价,这就是新闻媒体常说的“大数据杀熟”,据媒体报道,在我国的网购平台、在线旅游、网约车等平台均不同程度出现过“大数据杀熟”的情况,这些情况正是平台利用其数据垄断地位优势,损害消费者权益的表现。
对消费者行为的预测和控制,强化竞争优势,并使消费者对平台服务形成依赖。数据能够作为创建定制服务和产品以及提高制造效率的输入。很多在线平台提供的交易撮合服务,由于平台上有很多服务提供者或者卖家,可以给消费者提供数以千计乃至数以万计的选择,消费者面对如此之多的选择时,容易产生选择困难症。这样,竞争优势的一个重要方面是为消费者提供高效的匹配。对于拥有大量用户数据的平台而言,他们可以根据消费者自身的数据进行消费者画像,并根据与消费者相关联的其他人的行为数据等,从而为消费者提供更精准的个性化推荐和匹配。
数据使用会带来消费者的锁定,而这将进一步优化面向消费者的服务,带来更长时间的应用。数据使用可以挖掘新的用途或者客户需求,增加数据价值,降低数据成本,网络效应将带来数据的横向扩张(增加新的用户以及数据),从而强化平台市场力量。平台拥有对消费者行为进行预测与控制的能力,使原有的关于竞争的理念以及反垄断方法都面临着挑战。例如,年7月,谷歌的首席执行官桑达尔·皮查伊(SundarPichai)在参议院反托拉斯小组委员会上作证说,“竞争只有一键之遥”(onlyoneclickaway)。他作证说,进入障碍不存在,“使用Google是一种选择(也是免费的),并且消费者浏览
转载请注明:http://www.aideyishus.com/lkjg/3424.html